19 research outputs found

    Macrophage-derived Extracellular Vesicle packaged WNTs rescue intestinal stem cells 2 and enhance survival after radiation injury

    Get PDF
    WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation

    Genetic programming of macrophages generates an in vitro model for the human erythroid island niche

    Get PDF
    In vitro differentiation of red blood cells (RBCs) is a desirable therapy for various disorders. Here the authors develop a culture system using stem cell-derived macrophages to show that inducible expression of a transcription factor, KLF1, enhances RBC production, potentially through the induction of three soluble factors, ANGPTL7, IL33 and SERPINB2

    PLoS One

    Get PDF
    Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/planar cell polarity, Frizzled4 and Frizzled6, affect vascular network morphogenesis. Experiments were performed on frizzled4 (Fzd4-/-) and frizzled6 (Fzd6-/-) deleted mice and littermate controls (WT) perfused with a contrast medium after euthanasia and exsanguination. The kidneys were scanned with a high-resolution (16 μm) microCT imaging system, followed by 3D reconstruction of the arterial vasculature. Computational treatment includes decomposition of 3D networks based on Diameter-Defined Strahler Order (DDSO). We have calculated quantitative (i) Global scale parameters, such as the volume of the vasculature and its fractal dimension (ii) Structural parameters depending on the DDSO hierarchical levels such as hierarchical ordering, diameter, length and branching angles of the vessel segments, and (iii) Functional parameters such as estimated resistance to blood flow alongside the vascular tree and average density of terminal arterioles. In normal kidneys, fractal dimension was 2.07±0.11 (n = 7), and was significantly lower in Fzd4-/- (1.71±0.04; n = 4), and Fzd6-/- (1.54±0.09; n = 3) kidneys. The DDSO number was 5 in WT and Fzd4-/-, and only 4 in Fzd6-/-. Scaling characteristics such as diameter and length of vessel segments were altered in mutants, whereas bifurcation angles were not different from WT. Fzd4 and Fzd6 deletion increased vessel resistance, calculated using the Hagen-Poiseuille equation, for each DDSO, and decreased the density and the homogeneity of the distal vessel segments. Our results show that our methodology is suitable for 3D quantitative characterization of vascular networks, and that Fzd4 and Fzd6 genes have a deep patterning effect on arterial vessel morphogenesis that may determine its functional efficiency

    Cre Driver Mice Targeting Macrophages.

    No full text
    The Cre/loxP system is a widely applied technology for site-specific genetic manipulation in mice. This system allows for deletion of the genes of interest in specific cells, tissues, and whole organism to generate a diversity of conditional knockout mouse strains. Additionally, the Cre/loxP system is useful for development of cell- and tissue-specific reporter mice for lineage tracing, and cell-specific conditional depletion models in mice. Recently, the Cre/loxP technique was extensively adopted to characterize the monocyte/macrophage biology in mouse models. Compared to other relatively homogenous immune cell types such as neutrophils, mast cells, and basophils, monocytes/macrophages represent a highly heterogeneous population which lack specific markers or transcriptional factors. Though great efforts have been made toward establishing macrophage-specific Cre driver mice in the past decade, all of the current available strains are not perfect with regard to their depletion efficiency and targeting specificity for endogenous macrophages. Here we overview the commonly used Cre driver mouse strains targeting macrophages and discuss their major applications and limitations. Methods Mol Biol 2018; 1784:263-27
    corecore